
Determination of the symmetries characterising separable systems in Euclidean spaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 353

(http://iopscience.iop.org/0305-4470/21/2/014)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A:  Math. Gen. 21 (1988) 353-362. Printed in  the U K  

Determination of the symmetries characterising separable 
systems in Euclidean spaces 

Gregory J Reid 
Department of Mathematics and Institute of Applied Mathematics, University of British 
Columbia, Vancouver V6T 1 Y4, Canada 

Received 14 November 1986, in final form 30 July 1987 

Abstract. The (additively) separable coordinate systems for the Hamilton-Jacobi equation 
of classical mechanics, in n-dimensional complex Euclidean space C", are characterised 
explicitly in terms of the Lie symmetry algebra of C". Specifically a formula is given by 
which the n-separation constants, regarded as functions of position and momentum, can 
be expressed as members of the enveloping algebra of C" (i.e. as elements of the vector 
space spanned by products of the members of the Lie algebra of 'E"). By quantising these 
n integrals of the motion we easily obtain the commuting sets of n partial differential 
operators characterising the (multiplicatively) separable systems for the corresponding 
Helmholtz equation. A package including this formula has been implemented in the 
symbolic language M A C S Y M A .  The resulting program is also capable of calculating many 
of the time-consuming details (separation equations, etc) of separation on 4:". 

1. Introduction 

Separation of variables for the Hamilton-Jacobi equation and time-independent 
Schrodinger equations, in n variables in n-dimensional Euclidean space, is known to 
be characterisable in terms of the Lie symmetries (rotations and translations) of 
Euclidean space. As Miller (1977) has shown, the knowledge of such symmetry 
characterisations enables the easy generation of (special function) identities between 
the separable solutions. For example, the problem of expanding one separable solution 
in terms of the separated eigenfunctions arising out of a different separable coordinate 
system can be reduced to a problem in the representation theory of the Euclidean group. 

The calculation of these symmetry characterisations has been achieved in practice 
by using ad hoc techniques, which soon become unmanageable in higher dimensions 
( n  2 3). In this paper we present a formula by which the symmetry characterisations 
associated with a given separable coordinate system can be calculated explicitly. This 
formula has been incorporated in a computer program, S E P C A L . ~ ,  written in the symbolic 
language MACSYMA. Other features, such as the calculation of separation equations, 
have also been incorporated in the program and relieve much of the tedium of the 
calculations involved in separation of variables. 

This paper is concerned with the separable coordinate systems for the time- 
independent (reduced) Schrodinger equation, in n-dimensional complex Euclidean 
space C": 

(1.1) -( h2/2m)A9 + ( V - E ) +  = 0 h = h / 2 ~  
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3 54 G J Reid 

where E is a non-zero constant, A is the Laplace-Beltrami operator 

and h is Planck's constant. The metric in a given coordinate system zi = f ' ( x h )  is 
ds2 = g,J dx '  dxJ, g = det(g,J) # 0 and gikgkJ = 8 ; .  The Einstein summation convention 
will always be assumed unless otherwise stated. We consider equation (1.1) in n- 
dimensional complex Euclidean space C", with complex Cartesian coordinates 
zl, . , . , zn, since we will be able to give a uniform treatment of the multitude of various 
real forms of (1.1) (e.g. the constant potential Klein-Gordon equation). 

Equation (1.1) is closely associated with the Hamilton-Jacobi ( H J )  equation of 
classical mechanics for a particle of mass m moving under the influence of a potential 
V ( x k ) :  

H(x' ,  p ,  j = ( 1/2m)g"pIpJ + V = E. (1.3) 

Here p I  = a  W/ax' and W is the Hamilton-Jacobi function or complete integral of 
(1.3), i.e. W = W(xl, A I )  is a regular n-parameter family of solutions of (1.3) such that 
det(a2 W/ax'aA,) # 0. Once a complete integral is known for (1.3) one can determine 
the trajectory of a particle by known methods (see Whittaker (1961) ch 10-12 and in 
particular 5 142). 

The relationship between ( 1.3) and (1.1) is one of quantisation. A close relationship 
also exists in the case of separation of variables (see Kalnins and Miller 1982). Every 
multiplicatively separable system for ( l . l ) ,  i.e. every coordinate system {xk} in which 
(1.1) admits a solution of form 

is an additively separabld system for the HJ equation (1.3), i.e. one in which the HJ  

equation admits a solution of the form 

W(xk)  = W,(x'; A , ,  . . . , A n ) .  (1.5) 
, = I  

The c, and A ,  are the separation constants for (1.1) and (1.3) respectively. The 
A ,  = g,(xk, p k )  are often called constants of the motion since their value depends only 
on the particular trajectory followed by a particle, although they may vary from 
trajectory to trajectory. 

Benenti and Francaviglia (1980) have shown that if {xh} is a separable system for 
the HJ equation (1.3) with V # 0 then it is also a separable system for (1.3) with V = 0. 
Henceforth, therefore, we will restrict ourselves to the study of the free-particle case 
V = O  for (1.1) (now the Helmholtz equation) and the H J  equation (1.3). 

The Helmholtz equation (1.1) and the HJ equation (1.3) both share the same Lie 
symmetry group, that of the underlying Euclidean space (see Eisenhart 1949). The 
n(n + 1)/2 infinitesimal generators of its Lie algebra Yn = { g r :  r = 1,2, . . . , n( n + 1)/2} 
can be taken as 
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where s = n ++( k - l ) ( k  - 2) + j ,  i = fl and the commutation relations are 

It has long been known that if a variable x u  does not appear explicitly in equations 
(1.1) and (1.3) then $a =exp(cx") in (1.4) and W, =Ax" in (1.5). Thus (a$/ax") = c$, 
a Wlax" = P, = A and a/ax" corresponds to a Lie symmetry for these equations, and 
as such is a linear combination of the 2, in 2". The simplest examples include 
two-dimensional Cartesian coordinates (x" = x )  and polar coordinates (x-  = e). 

Not so widely known is the fact that every separable system for (1.1) and (1.3) can 
also be characterised (see Kalnins and Miller 1980) in terms of the Lie algebra of C" 
but now in a more complicated way. The simplest examples include separation for 
the two-dimensional Helmholtz equation in elliptic and parabolic coordinates, systems 
in which no obvious continuous Lie symmetry is present. 

Specifically, for the HJ equation in C", Kalnins and Miller (1980) have shown, 
albeit implicitly, that each of the n-separation constants A i  can be expanded in terms 
of the enveloping algebra of C" (the vector space spanned by symmetrised products 
of members of 2"). A similar characterisation but now in terms of n commuting 
symmetry operators for the Helmholtz equation can be obtained by mapping the 
constants of the motion into the corresponding symmetry operators, essentially a 
process of quantisation. 

The fruitful relationship between symmetry and separation of variables has moti- 
vated an intensive series of investigations (see, e.g., Miller et a1 (1981) and references 
cited therein) to classify the separable systems for the common partial differential 
equations of mathematical physics and to give their accompanying symmetry characteri- 
sations. A particularly arduous part of the work has been to find the enveloping algebra 
members characterising the separation. In  some cases, such as for orthogonal separable 
systems on real n-dimensional Euclidean spaces and the real n-sphere (see Kalnins 
1986, Reid 1986) general formulae have been derived using limiting techniques. In 
general, however, no direct technique is known, and the results have to be derived by 
inspection, an approach which soon becomes impossible in higher dimensions. For 
example, in Kalnins and Miller ( 1979) the operators characterising the separable 
coordinate systems (3.20) and (3.21) have defied calculation by hand. 

In this paper we present an explicit formula (theorem 2.1) for calculating the 
enveloping algebra members characterising the separation. 

2. Determination of the symmetries characterising separable systems for the 
HamiltonJacobi equation 

The principal result of this section is the formula given in theorem 2.1. This formula 
determines the constants of the motion arising from separation of variables for the HJ 

equation (1.3) with V = 0, explicitly in terms of the enveloping algebra of C". 
One way of solving the equations of motion for a classical particle moving under 

the influence of a potential V(xh)  is to find n constants or integrals of the motion. 
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Thus one seeks n independent quantities K, such that dK, /d t  = 0 where d / d i  is the 
total time derivative following the particle along its trajectory. This is equivalent in 
Hamilton’s formalism to finding K,(x’ ,  p , ) :  

(2.1) { H ,  K , }  = 0 j = 1,2 , .  . . , n 
where { , } is the Poisson bracket and is defined by 

{ F ,  G } =  >’ (-y---). a F d G  a F a G  
ap, ax ax‘ ap ,  

One method for finding such constants of the motion is the method of separation of 
variables. The most elementary constants of the motion are the first-order constants 
of the motion which are those functions A, linear in the momentum: 

A, = al,,,Pt (2.3) 

that commute with H via the Poisson bracket. As already mentioned these correspond 
directly to geometric symmetries of the manifold and to the simplest possible type of 
variable separation. Indeed this correspondence can be taken as 

2J Q, (2.4) 

with 

and 
dW pl+?--=p 
dz’ 

A coordinate-dependent set of necessary and sufficient conditions for (1.3) to be 
additively separable in orthogonal coordinates (i.e. g,’ = 0 for i # j )  was given by Stackel 
(1891) and later Levi-Civita (1904) considered the general (non-orthogonal) problem. 
In principle a solution to the general problem (g,, not necessarily orthogonal) was 
found by Dall’Acqua (1909, 1912) resulting in four classes of separable coordinates, 
but his results are rather difficult to apply. However, it was only recently that Benenti 
and Francaviglia (1980), using Dall-Acqua’s results, were able to give a complete 
solution to the separation of variables problem for (1.3) in terms of the local coordinates 
xk .  (Dall’Acqua’s four classes of separable coordinates reduce to three under the 
definition of equivalence used by Benenti and Francaviglia.) 

Kalnins and Miller (1981) have found a complete theory which characterises all 
the separable coordinate systems for the H J  equation (1.3) (with V = 0) in a coordinate- 
free manner. In  their theory this is accomplished by focusing on the properties of the 
separation constants A L .  In particular they find that the Ak satisfy 

AA = a?hl (x‘ )p ,pJ  A , = H  ( 2 . 6 ~ )  

{ A i ,  A i l  = 0 k , l = 1 , 2  , . . . ,  n. (2.66) 

(Simply replace A, in (2.3) by A: to see that the A, can be represented in the form 
(2.6).) Explicit formulae for the ayll are given in Kalnins and Miller (1981). From 
(2.1) it follows that the u t ’  must satisfy Killing’s equations: 

( 2 . 7 )  
where ; k  denotes covariant differentiation with respect to x h  (see 9 39 of Eisenhart 
(1949)). Thus the U:;’ are second-order Killing tensors and the A, are second-order 
constants of the motion. 

a” ’  1 1 .  I + a;;:, + a:,;, = 0 
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From (2.1) it follows that any product of two first-order constants of the motion 
will be a second-order constant of the motion. The natural question arises as to whether 
the vector space spanned by products of the first-order constants of the motion (i.e. 
the enveloping algebra) coincides with the vector space formed by all second-order 
constants of the motion. For spaces of constant curvature this is true as has been 
shown by Katzin and Levine (1965). The same result for flat spaces was demonstrated 
by Thomas (1946). For related work see Delong (1982) and Hauser and Malhiot (1975). 

The connection between the Euclidean group and separation of variables for the 
H J  equation is now clear. For each of the separation constants in ( 1 . 5 )  it is possible 
to find coefficients of expansion A::): 

A k  = A;:,{Q/, Q m ) S  (2.8) 

where { Q ,  Q m j S  =f(QIQm + QmQl) = Q,Qm is the symmetrised product of Q, and Q m .  

One difficulty remains: how d o  we calculate the A::) in (2.8)? Our answer is given by 
the following theorem. 

Theorem 2.1. Suppose that A(xh ,  p k )  = a ” ( x k ) p , p ,  is a second-order constant of the 
motion in C”, and that the x k  are connected to complex Cartesian coordinates by 
z ’  = f ’ ( x k )  then 

n-3  n - 2  n - l  

A = 4  c i ( A L { M ~ ~ ,  Mru}s+A:E{Mrr, ~ s u ~ s )  

r = l  c = r + l  u = r + l  

(2.9) 

(2.10a) 

(2.10b) 
a 

axP 
B i = ( J -  ) - a^” - 2,4 ;/ f‘ 

CV = ; V  f A f  ‘ - B;I f k .  

Here ( J ) :  = (af ‘/axs) is the Jacobian matrix and  

Proof: Expressing A in terms of Cartesian coordinates gives 

A = a^‘”P,P, 

(2.10c) 

(2.11) 

(2.12) 
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where 

(2.13) 

In these coordinates equation (2.7) becomes 

- + - + L = o .  
a 2  az' azJ 
ai,, ail,  86, 

(2.14) 

By differentiating equation (2.14) twice it is not difficult to show (e.g. see Katzin and 
Levine 1965) that 

(2.15) i'J = A ' / , z k ~ ' +  B;- ' zk  + C" 

where the only constraints on the constants in (2.15) are 

( 2 . 1 6 ~ )  

A:,+A:,'+A:: = o  (2.166) 

B;J + B:'+ B{h = 0. ( 2 . 1 6 ~ )  

A simple count shows that there are D( n )  = n (  n + 1 ) 2 (  n + 2)/  12 independent quantities 
in (2.15). Thus the space of second-order constants of the motion is D( n )  dimensional. 

{Mrs, MlUh { M m  MS"h l S r < s < t < u S n  ( 2 . 1 7 ~ )  

A:' = Ai' = Ayk B :  = BJL C'l = C" 

It is easy to verify (see Kalnins and Miller 1980) that the expressions: 

{Mrs, Mw)s { M n ,  M5JS {Mru, Msuh 
(M," ,  PAS { M n ,  PUIS l S r < s < u < n  (2.17 b) 

M fs { M m  P r h  {Mu, PSIS prpi l G r < s S n  ( 2 . 1 7 ~ )  

Pt  l s r s n  (2.17d) 

form a basis of linearly independent elements for the enveloping algebra with dimension 
2"C4+5"C3+4"C,+"Cl = D(n).  (Note that not all of the products Q,Qm are linearly 
independent.) Thus the space of the second-order constants of the motion is just the 
enveloping algebra of C". 

From (2.12) and (2.15) 

(2.18b) 

( 2 . 1 8 ~ )  
and equations (2.10u), (2.10b) and ( 2 . 1 0 ~ )  in theorem 2.1 follow directly from these 
expressions. 

C'J = -A;-' ,zkr'  - B;lZh 

Since A is a member of the enveloping algebra 

r = l  s = r + l  1 = r ~ 1  u = r + l  

(2.19) 

for some constants U: : ,  U: : ,  U: , ,  c,,, etc. 
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We can obtain a:;, a;,:, . . . , c,, in terms of Ai', B i ,  C" by substituting M,,  = ZIP, - zJP, 
in (2.19) and differentiating A. For example, for r < s < t < U :  

= 4A::. 
a4A 

az'  azu aP, aP, ai:, = (2.20) 

The other coefficients are obtained in the same way. This completes the proof. 

In a similar fashion we can express any first-order constant of the motion as a linear 
combination of members of the Lie algebra. 

3. Determination of the symmetries characterising separable systems for the Helmoltz 
equation 

As before we need only concern ourselves with the case V = 0 and then (1.1) is the 
Helmholtz equation: 

A* = E$. 
h 2  

2m 
-- (3.1) 

Already we know that every (multiplicatively) separable coordinate system for (3.1) 
is an  (additively) separable system for the HJ equation (1.3). The work of Kalnins and  
Miller (1982) implies that for each separable system { x ' }  there exist n second-order 
partial differential operators 

(3.2) 

such that for a separable solution $ ( X I )  

yk$ = Ck$ (3.3) 

where the c k  are the separation constants. (Without loss of generality 9, = A  and 
c, = E.) The work of Kalnins and Miller (1982) implies that in a flat space @ "  these 
operators can be written in the 'formally' self-adjoint form 

for some functions hk(x') ,  and that the 9, pairwise commute: 

[Yk, y/1= 0 k , I = l ,  . . . ,  n. 

(3.4) 

(3.5) 
In particular we will show that 

y h  2 m } S .  (3.6) 
Just consider 

= . Y k  - A;T,{2,, 2,,,}s (3.7) 
which is a first-order partial differential operator since by virtue of (3.4) the second-order 
derivative terms in (3.7) vanish. 

Clearly [A,  TL] = 0 and so 

(3.8) 
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where Tk is a first-order (Lie) symmetry operator. However, Yk is not in self-adjoint 
form unless = d,, (a constant). Without loss of generality we can take dk = 0 since 
it only corresponds to  a trivial eigenvalue shift. Thus we have verified the simple 
quantisation rule for obtaining the symmetry operators for separation of the Helmholtz 
equation from the A k  for the H J  equation. 

4. Applications 

We have chosen to frame our  results in @ "  since the many resulting real forms can be 
easily treated in a unified manner. For example, to treat the Klein-Gordon equation 
for a free particle of spin 0: 

one simply makes the identifications z l+  x, z '+y,  z 3 +  z, z4+ict ,  V =  0, E =$c' in 
equation ( 1 . 1 ) .  Also in Reid (1986) (or see Kalnins 1986) it is shown how the 
time-dependent Schrodinger equation in n spatial dimensions 

- h 2  a+ - AI) + VI) = i h  - 
2m a t  

(4.2) 

can be obtained from the constant potential Klein-Gordon equation in n + 2 dimensions 
by a simple symmetry reduction. Thus the symmetry characterisations for the time- 
dependent Schrodinger equation can be obtained simply from our formula. Indeed it 
was from the results generated by the program SEPCAL.V for (4.2), for n = 1 , .  . . , 5 ,  
that the author was able to conjecture the form of the symmetry operators in n 
dimensions (see Reid (1986) for a proof of the conjecture). 

In the following we outline a little of the theory of separation of variables on a 
Riemannian space applying it to a simple example to illustrate the use of our algorithm. 

For example if {x ' }  is an  orthogonal coordinate system it is known 
corresponding H J  equation 

n 

H = g"pf = E E Z O  
r = l  

is separable iff the g" have Stackel form. That is, there is a matrix ( Q r J ( x ' ) )  

that the 

(4.3) 

in which 
the ith row has entries depending on x'  alone, such that g " = @ " / @  (@==et(@,,)) .  
The constants of the motion describing this system can be readily expressed in terms 
of the Stackel matrix: 

(4.4) 

Thus given the coordinate transformations and the Stackel matrix it is possible to find 
A, in terms of the enveloping algebra by using the methods of 9 2. 

Example. Consider parabolic coordinates in two dimensions with coordinate transfor- 
mations defined by 

(4.5) 21 = - (x')'] z?=xlxz  
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The Stackel matrix for this separable system is 

Thus 

(4.6) 

(4.7) 

where p ,  = a W l d x ' .  If  we carry out the step given in (2.12) the reader can verify that: 

(4.8) h 2  = ( (X I ) '  - ( x ' ) * ) P ;  - 2X'~'Plpz P, = a  w/az'. 
In this situation formula (2.9) yields 

h2=A::M:2+2B:Z{Mlr, Pl}s-2B:2{M12, Pz}s+2Cll{PI, P 2 ) S - C  CllP:+ C22Pi. (4.9) 

Using (2.10) 

A22-B'z-C 1 1 -  , - 1 2 - c 1 1 = c 2 z = o  - B:'= - 1 .  (4.10) 

Thus 

h2=2{M,2, P'},. (4.11) 

To obtain the corresponding operators for the Helmholtz equation we use the correspon- 
dence (2.4) 

/\2=2{Mlr, Pz}s+ Y ~ = ~ { J U I ~ ,  92)s. (4.12) 

All of the steps illustrated by this simple example have been automated in the symbolic 
program S E P C A L . ~ .  The result could have been easily obtained by inspection or by an 
orbit analysis as in Miller (1977). The formula is most useful in higher dimensions 
where such methods soon become impractical to apply. 

Apart from the constants of the motion many other quantities associated with 
separation of variables have explicit formulae: the Helmholtz equation, the separation 
equations for both the Hamilton-Jacobi and Helmholtz equations and also the metric. 
These formulae are all amenable to symbolic programming and have been incorporated 
in the program S E P C A L . ~ .  We also note that there are many subsections of the program 
whose operation does not depend on the space being flat. For example, the subsections 
involving manipulations with Stackel matrices and the production of the separation 
equations can be used for performing calculations in non-flat spaces. 

Considerable attention has been devoted by investigators such as Kalnins and 
Miller to classifying separable systems and providing their algebraic characterisations 
in terms of commuting sets of operators (see, e.g., Miller er a1 1981). Miller (1977) 
has used such algebraic characterisations and the methods of Lie theory to determine 
overlap coefficients between different separable bases and to find generating functions 
and integral representations for the separated eigensolutions. Miller (1977) has also 
demonstrated the utility of this group-theoretic approach in providing simple and 
well-motivated derivations of special function identities, both old and new. 

Deriving the algebraic characterisations, even in low dimensions is an arduous task. 
The program has already proved useful in spaces of low dimension for checking and 
correcting previously obtained results and generating the associated miscellaneous 
details of separation. In  Reid (1984) a special class of separable coordinate systems 
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in C, is presented and all the miscellany of separation; separation equations, operators, 
etc, are generated as an example of the use of the program S E P C A L . ~ .  A subclass of 
these systems was the subject of an article by Kalnins and Reid (1982). The systems 
presented in Reid (1984) also contain as a four-dimensional subcase the previously 
uncalculated operators for the coordinate system (3.20) of Kalnins and Miller (1979). 
Kalnins (1986 private communication) has recently used the program to calculate the 
operators for the coordinate system (3.21) of Kalnins and Miller (1979), another system 
whose operators had defied computation by hand. In future the program should prove 
valuable in extending the above work to higher dimensions. 
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